Matrix factorization methods: application to Thermal NDT/E
نویسندگان
چکیده
A typical problem in Thermal Nondestructive Testing/Evaluation (TNDT/E) is that of unsupervised feature extraction from the experimental data. Matrix factorization methods (MFMs) are mathematical techniques well suited for this task. In this paper we present the application of three MFMs: Principal Component Analysis (PCA), Non-negative Matrix Factorization (NMF), and Archetypal Analysis (AA). To better understand the peculiarities of each method the results are first compared on simulated data. It will be shown that the shape of the data set strongly affects the performance. A good understanding of the actual shape of the thermal NDT data is required to properly choose the most suitable MFM, as it is shown in the application to experimental data.
منابع مشابه
A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملOn the WZ Factorization of the Real and Integer Matrices
The textit{QIF} (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ} factorization. The WZ factorization can be faster than the textit{LU} factorization because, it performs the simultaneous evaluation of two columns or two rows. Here, we present a method for computing the real and integer textit{WZ} and textit{ZW} factoriz...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کامل